GCE Examinations

Advanced Subsidiary / Advanced Level

Decision Mathematics

Module D2

Paper A

MARKING GUIDE

Abstract

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Craig Hunter, Edited by Shaun Armstrong
© Solomon Press
1.

		B			row minimum
		I	II	III	
A	I	- 3	4	0	-3
	II	2	2	1	1
	III	3	-2	${ }^{-} 1$	- 2
column maximum		3	4	1	

M1 A1
$\max ($ row $\min)=\min (\operatorname{col} \max)=1 \therefore$ saddle point
M1
$\therefore A$ should play II all the time, B should play III all the time
M1 A1
2. (a) x_{11} - number of crates from A to D
x_{12} - number of crates from A to E
x_{13} - number of crates from A to F
x_{21} - number of crates from B to D
x_{22} - number of crates from B to E
x_{23} - number of crates from B to F
x_{31} - number of crates from C to D
B1
x_{32} - number of crates from C to E
x_{33} - number of crates from C to F
(b) minimise

$$
z=19 x_{11}+22 x_{12}+13 x_{13}+18 x_{21}+14 x_{22}+26 x_{23}+27 x_{31}+16 x_{32}+19 x_{33} \quad \text { B2 }
$$

(c) $x_{11}+x_{12}+x_{13}=42$ number of crates at A
$x_{21}+x_{22}+x_{23}=26$ number of crates at B
$x_{31}+x_{32}+x_{33}=32$ number of crates at C
$x_{11}+x_{21}+x_{31}=29 \quad$ number of crates required by D
$x_{12}+x_{22}+x_{32}=47$ number of crates required by E M1 A1
$x_{13}+x_{23}+x_{33}=24 \quad$ number of crates required by F
$x_{i j} \geq 0$ for all i, j
reference to balance B1
3.

Stage	State	Destination	Cost	Total cost
1	Marquee	Deluxe	20	20^{*}
		Cuisine	24	24
	Castle	Deluxe	21	21
		Castle	15	15^{*}
		Cuisine	22	22
	Hotel	Deluxe	18	18^{*}
		Cuisine	23	23
		Hotel	19	19
2		Marquee	2	$2+20=22$
		Castle	5.5	$5.5+15=20.5^{*}$
		Hotel	3	$3+18=21$
	Castle	Marquee	3	$3+20=23$
	Castle	5	$5+15=20^{*}$	
	Registry	Marquee	3.5	$3.5+20=23.5$
	Office	Castle	6	$6+15=21$
	Hotel	2	$2+18=20^{*}$	
3	Home	Castle	3	$3+20.5=23.5$
		Church	5	$5+20=25$
		Registry	1	$1+20=21^{*}$

M1 A1

M1 A2

A1
minimum cost with ceremony - Registry Office reception - Hotel catering - Deluxe
cost $=£ 2100$
A1
(9)
4. (i)

order:	1	4	8	2	3	6	5	7
	A	B	C	D	E	F	G	H
A	-	85	59	31	47	52	74	41
B	85	-	104	73	51	68	43	55
C	59	104	-	54	62	88	61	45
D	31	73	54	-	40	59	65	78
E	47	51	62	40	-	56	71	68
F	52	68	88	59	56	-	53	49
G	74	43	61	65	71	53	-	63
H	41	55	45	78	68	49	63	-

tour: $A D E B G F H C A$
upper bound $=31+40+51+43+53+49+45+59=371 \mathrm{~km}$
(ii) e.g. beginning at A

order:	1	4	7	2	3	6	5	
	A	B	C	D	E	F	G	H
A	-	85	59	31	47	52	74	41
B	85	-	104	73	51	68	43	55
C	59	104	-	54	62	88	61	45
D	31	73	54	-	40	59	65	78
E	47	51	62	40	-	56	71	68
F	52	68	88	59	56	-	53	49
G	74	43	61	65	71	53	-	63
H	41	55	45	78	68	49	63	-

weight of MST $=31+40+51+43+52+54=271$
lower bound $=$ weight of MST + two edges of least weight from H

$$
=271+41+45=357 \mathrm{~km}
$$

5. (a) let X play strategies X_{1} and X_{2} with proportions p and $(1-p)$ expected payoff to X against each of Y 's strategies:
$Y_{1} \quad 10 p-4(1-p)=14 p-4$
$Y_{2} \quad 4 p-(1-p)=5 p-1$
$Y_{3} \quad 3 p+9(1-p)=9-6 p$
giving

$p=0 \quad p=1$
it is not worth player Y considering strategy Y_{1}
for optimal strategy $5 p-1=9-6 p$

$$
\therefore 11 p=10, p=\frac{10}{11}
$$

$\therefore X$ should play $X_{1} \frac{10}{11}$ of time and $X_{2} \frac{1}{11}$ of time
(b) let Y play strategies Y_{2} and Y_{3} with proportions q and $(1-q)$
expected loss to Y against each of X 's strategies:
$X_{1} \quad 4 q+3(1-q)=q+3$
$X_{2} \quad-q+9(1-q)=9-10 q$
M1 A1
for optimal strategy $q+3=9-10 q$

$$
\therefore 11 q=6, q=\frac{6}{11}
$$

$\therefore Y$ should not play Y_{1}, should play $Y_{2} \frac{6}{11}$ of time and $Y_{3} \frac{5}{11}$ of time M1 A1
(c) value $=\left(5 \times \frac{10}{11}\right)-1=3 \frac{6}{11}$

M1 A1
6. need to maximise so subtract all values from 55 giving

18	26	11	4	4
10	25	12	14	40
23	28	16	5	5
12	30	4	0	
12	0			

reducing rows gives:
142270
$\begin{array}{lll}0 & 15 & 2\end{array}$
1823110
M1 A1
123040
----------.
col min.
$\begin{array}{llll}0 & 15 & 2\end{array}$
reducing columns gives:

14	7	5	0
0	0	0	4
18	8	9	0
12	15	2	0

2 lines required to cover all zeros, apply algorithm B1

12	5	3	0
0	0	0	6
16	6	7	0
10	13	0	0

(N.B. a different choice of lines will
lead to the same final assignment)

M1 A1

3 lines required to cover all zeros, apply algorithm

4 lines required to cover all zeros so allocation is possible
M1 A1
R_{1} goes to A_{2}
R_{2} goes to A_{1}
R_{3} goes to A_{4}
R_{4} goes to A_{3}
7. (a)

	W_{A}	W_{B}	W_{C}	Available
W_{1}	5	5		10
W_{2}		7	1	8
W_{3}			7	7
Required	5	12	8	

taking $R_{1}=0, \quad R_{1}+K_{1}=7 \quad \therefore K_{1}=7 \quad R_{1}+K_{2}=8 \quad \therefore K_{2}=8$
$R_{2}+K_{2}=6 \quad \therefore R_{2}={ }^{-} 2 \quad R_{2}+K_{3}=5 \quad \therefore K_{3}=7$
$R_{3}+K_{3}=7 \quad \therefore R_{3}=0$

	$K_{1}=7$	$K_{2}=8$	$K_{3}=7$	
$R_{1}=0$	0	0	10	
$R_{2}=-2$		9	0	0
$R_{3}=0$		11	0	5

improvement indices, $I_{i j}=C_{i j}-R_{i}-K_{j}$

$$
\begin{aligned}
\therefore \quad & I_{13}=10-0-7=3 \\
I_{21} & =9-(-2)-7=4 \\
& I_{31}=11-0-7=4 \\
& I_{32}=5-0-8=-3
\end{aligned}
$$

(c)
applying algorithm let $\theta=7$, giving

	W_{A}	W_{B}	W_{C}
W_{1}	5	5	
W_{2}		$7-\theta$	$1+\theta$
W_{3}		θ	$7-\theta$

	W_{A}	W_{B}	W_{C}
W_{1}	5	5	
W_{2}			8
W_{3}		7	

no. of rows + no. of cols $-1=3+3-1=5$
in this solution only 4 cells are occupied, less than $5 \therefore$ degenerate
(d) placing 0 in $(2,2)$ so it is occupied
taking $R_{1}=0, \quad R_{1}+K_{1}=7 \quad \therefore K_{1}=$
$R_{1}+K_{2}=8 \quad \therefore K_{2}=8$
$R_{2}+K_{3}=5 \quad \therefore K_{3}=7 \quad$ M1 A1
$R_{2}+K_{2}=6 \quad \therefore R_{2}=-2$
$R_{3}+K_{2}=5 \quad \therefore R_{3}=-3$

	$K_{1}=7$	$K_{2}=8$	$K_{3}=7$		
$R_{1}=0$	0	0	10		
$R_{2}=-2$		9	0	(0)	
$R_{3}=-3$		11	0	7	

$$
\begin{aligned}
\therefore \quad I_{13} & =10-0-7=3 \\
I_{21} & =9-(-2)-7=4 \\
I_{31} & =11-(-3)-7=7 \\
I_{33} & =7-(-3)-7=3
\end{aligned}
$$

all improvement indices are non-negative \therefore pattern is optimal
5 lorries from W_{1} to $W_{\mathrm{A}}, 5$ lorries from W_{1} to W_{B},
8 lorries from W_{2} to $W_{\mathrm{C}}, 7$ lorries from W_{3} to W_{B}
(e) total cost $=10 \times[(5 \times 7)+(5 \times 8)+(8 \times 5)+(7 \times 5)]=£ 1500$

M1 A1

Performance Record - D2 Paper A

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	game, stable soln.	$\begin{aligned} & \text { transport., } \\ & \text { formulate } \\ & \text { lin. prog. } \end{aligned}$	dynamic prog. min.	TSP, nearest neighbour	$\begin{aligned} & \text { game, } \\ & \text { graphical } \\ & \text { method } \end{aligned}$	allocation, max.	transport., n-w corner, stepping- stone, degeneracy	
Marks	5	6	9	11	13	13	18	75
Student								

