PMT

GCE Examinations Advanced Subsidiary / Advanced Level

Decision Mathematics Module D2

Paper A MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Craig Hunter, Edited by Shaun Armstrong © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

D2 Paper A – Marking Guide

1	
1.	

2.

				В		row			
			Ι	II	III	minimum			
		Ι	- 3	4	0	- 3			
	Α	II 2 2 1 1							
		III	3	- 2	- 1	- 2		M1 A1	
	column n	naximum	3	4	1				
max (row min) = min (col max) = 1 \therefore saddle point								M1	
	A should	play II all	the time	, B shou	ld play II	I all the time	2	M1 A1	(5)
(a) (b)	(a) x_{11} - number of crates from A to D x_{12} - number of crates from A to E x_{13} - number of crates from A to F x_{21} - number of crates from B to D x_{22} - number of crates from B to E x_{23} - number of crates from C to D x_{31} - number of crates from C to E x_{33} - number of crates from C to F (d)								
(0)	z = 1	$9x_{11} + 22x$	$x_{12} + 13x_{12}$	$x_{13} + 18x_2$	$_1 + 14x_{22}$	$x + 26x_{23} + 2^{2}$	$7x_{31} + 16x_{32} + 19x_{33}$	B2	
(c)	(c) $x_{11} + x_{12} + x_{13} = 42$ number of crates at A $x_{21} + x_{22} + x_{23} = 26$ number of crates at B $x_{31} + x_{32} + x_{33} = 32$ number of crates at C $x_{11} + x_{21} + x_{31} = 29$ number of crates required by D $x_{12} + x_{22} + x_{32} = 47$ number of crates required by E M1 A1 $x_{12} + x_{23} + x_{33} = 24$ number of crates required by E								
	x _{ij} ≥ refei	0 for all <i>i</i> , rence to ba	<i>j</i> lance					B1	(6)

3.

Stage	State	Destination	Cost	Total cost	
1	Marquee	Deluxe Cuisine	20 24	20* 24	
	Castle	Deluxe Castle Cuisine	21 15 22	21 15* 22	
	Hotel	Deluxe Cuisine Hotel	18 23 19	18* 23 19	M1 A1
2	Church	Marquee Castle Hotel	2 5.5 3	2 + 20 = 22 5.5 + 15 = 20.5* 3 + 18 = 21	
	Castle	Marquee Castle	3 5	3 + 20 = 23 5 + 15 = 20*	
	Registry Office	Marquee Castle Hotel	3.5 6 2	3.5 + 20 = 23.5 6 + 15 = 21 2 + 18 = 20*	M1 A2
3	Home	Castle Church Registry	3 5 1	3 + 20.5 = 23.5 5 + 20 = 25 1 + 20 = 21*	A1
minim cer rec cat	um cost with remony – Re ception – Ho tering – Delu	ı gistry Office tel xe			M1 A1
cost =	£2100				A1 (9)

4. (i)

order:	1	4	8	2	3	6	5	7
	Α	В	С	D	Ε	F	G	Η
Α	-	85	59	31	47	52	74	41
В	85	-	104	73	51	68	43	55
С	59	104	-	54	62	88	61	45
D	31	73	54	-	40	59	65	78
E	47	51	62	40	-	56	71	68
F	52	68	88	59	56	-	53	49
G	74	43	61	65	71	53	_	63
Н	41	55	45	78	68	49	63	_

M1 A2

A1

tour: ADEBGFHCA

upper bound = $31 + 40 + 51 +$	43 + 53 + 49 -	+45 + 59 = 371 km	
--------------------------------	----------------	--------------------	--

(ii) e.g. beginning at A

order:	1	4	7	2	3	6	5			
	Α	В	С	D	Ε	F	G	Н		
Α	-	85	59	31	47	52	74	41		
В	85	-	104	73	51	68	43	55		
С	59	104	-	54	62	88	61	45		
D	31	73	54	-	40	59	65	78		
Ε	47	51	62	40	-	56	71	68		
F	52	68	88	59	56	_	53	49		
G	74	43	61	65	71	53	-	63	M1 A2	
Н	41	55	45	78	68	49	63	_		
weight o	weight of MST = $31 + 40 + 51 + 43 + 52 + 54 = 271$ lower bound = weight of MST + two edges of least weight from <i>H</i>									
= 27 ∴ 357 ≤	= 271 + 41 + 45 = 357 km • 357 < d < 371									
		-							()	

PMT

let *X* play strategies X_1 and X_2 with proportions *p* and (1 - p)*(a)* expected payoff to X against each of Y's strategies: Y_1 10p - 4(1 - p) = 14p - 44p - (1 - p) = 5p - 13p + 9(1 - p) = 9 - 6p Y_2 M1 A1 Y_3 giving v 10 10 8 Y_3 Y_1 8 6 6 4 4 2 Y_2 2 **B**2 0 р -2 -2 -4 -4 p = 0*p* = 1 it is not worth player Y considering strategy Y_1 **B**1 for optimal strategy 5p - 1 = 9 - 6p $\therefore 11p = 10, \ p = \frac{10}{11}$ \therefore X should play $X_1 \frac{10}{11}$ of time and $X_2 \frac{1}{11}$ of time M1 A1 (b) let *Y* play strategies Y_2 and Y_3 with proportions *q* and (1 - q)expected loss to Y against each of X's strategies: 4q + 3(1 - q) = q + 3-q + 9(1 - q) = 9 - 10q X_1 X_2 M1 A1 for optimal strategy q + 3 = 9 - 10q $\therefore 11q = 6, q = \frac{6}{11}$ \therefore *Y* should not play Y_1 , should play $Y_2 \frac{6}{11}$ of time and $Y_3 \frac{5}{11}$ of time M1 A1 value = $(5 \times \frac{10}{11}) - 1 = 3\frac{6}{11}$ (c) M1 A1 (13)

5.

M1

6. need to maximise so subtract all values from 55 giving

row min. 18 26 11 4 4 10 25 12 14 10 23 28 16 5 5 12 30 4 0 0	
reducing rows gives:	
14 22 7 0 0 15 2 4 18 23 11 0 12 30 4 0	M1 A1
col min. 0 15 2 0	
reducing columns gives:	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1
2 lines required to cover all zeros, apply algorithm	B1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1
3 lines required to cover all zeros, apply algorithm	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1
4 lines required to cover all zeros so allocation is possible	B1
$R_1 \text{ goes to } A_2$ $R_2 \text{ goes to } A_1$ $R_3 \text{ goes to } A_4$	
R_4 goes to A_3	M1 A1 (13)

7. (*a*)

(b)

	W_{A}	$W_{ m B}$	W _C	Available
W_1	5	5		10
W_2		7	1	8
W_3			7	7
Required	5	12	8	

taking
$$R_1 = 0$$
, $R_1 + K_1 = 7$ \therefore $K_1 = 7$ $R_1 + K_2 = 8$ \therefore $K_2 = 8$
 $R_2 + K_2 = 6$ \therefore $R_2 = 2$ $R_2 + K_3 = 5$ \therefore $K_3 = 7$ M1 A2
 $R_3 + K_3 = 7$ \therefore $R_3 = 0$

	$K_1 = 7$	$K_2 = 8$	$K_3 = 7$
$R_1 = 0$	\bigcirc	\bigcirc	(10
$R_2 = -2$	9	\bigcirc	\bigcirc
$R_3 = 0$	(11	5	\bigcirc

improvement indices, $I_{ij} = C_{ij} - R_i - K_j$

:.
$$I_{13} = 10 - 0 - 7 = 3$$

 $I_{21} = 9 - (-2) - 7 = 4$
 $I_{31} = 11 - 0 - 7 = 4$
 $I_{32} = 5 - 0 - 8 = -3$

(c) applying algorithm

let $\theta = 7$, giving

	$W_{\rm A}$	$W_{\rm B}$	W _C		$W_{\rm A}$	$W_{\rm B}$	W _C	
W_1	5	5		W_1	5	5		
W_2		$7 - \theta$	$1 + \theta$	W_2			8	
W_3		θ	$7 - \theta$	W_3		7		M1 A1

no. of rows + no. of cols - 1 = 3 + 3 - 1 = 5in this solution only 4 cells are occupied, less than 5 \therefore degenerate B1

(d) placing 0 in (2, 2) so it is occupied taking $R_1 = 0$, $R_1 + K_1 = 7$ \therefore $K_1 = 7$ $R_2 + K_2 = 6$ \therefore $R_2 = ^2$ $R_3 + K_2 = 5$ \therefore $R_3 = ^3$ $R_1 + K_2 = 8$ \therefore $K_2 = 8$ $R_2 + K_3 = 5$ \therefore $K_3 = 7$ M1 A1

	$K_1 = 7$	$K_2 = 8$	<i>K</i> ₃ = 7
$R_1 = 0$	\bigcirc	\bigcirc	(10
$R_2 = -2$	9	\bigcirc	0
$R_3 = -3$	(11	\bigcirc	7

$$\therefore I_{13} = 10 - 0 - 7 = 3$$

$$I_{21} = 9 - (-2) - 7 = 4$$

$$I_{31} = 11 - (-3) - 7 = 7$$

$$I_{33} = 7 - (-3) - 7 = 3$$
all improvement indices are non-negative \therefore pattern is optimal
B1

all improvement indices are non-negative \therefore pattern is optimalB15 lorries from W_1 to W_A , 5 lorries from W_1 to W_B ,8 lorries from W_2 to W_C , 7 lorries from W_3 to W_B A1

(e) total cost = $10 \times [(5 \times 7) + (5 \times 8) + (8 \times 5) + (7 \times 5)] = \text{\pounds}1500$

Total (75)

M1 A1

M1 A1

M1 A1

(18)

Performance Record – D2 Paper A

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	game, stable soln.	transport., formulate lin. prog.	dynamic prog., min.	TSP, nearest neighbour	game, graphical method	allocation, max.	transport., n-w corner, stepping- stone, degeneracy	
Marks	5	6	9	11	13	13	18	75
Student								